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Abstract. Case retrieval in case-based reasoning relies heavily on the design of 
a good similarity function. This paper provides an approach to utilizing the cor-
relative information among features to compute the similarity of cases for case 
retrieval. This is achieved by extending the dot product-based linear similarity 
measures to their nonlinear versions with kernel functions. An application to the 
peptide retrieval problem in bioinformatics shows the effectiveness of the ap-
proach. In this problem, the objective is to retrieve the corresponding peptide to 
the input tandem mass spectrum from a large database of known peptides. By a 
kernel function implicitly mapping the tandem mass spectrum to a high dimen-
sional space, the correlative information among fragment ions in a tandem mass 
spectrum can be modeled to dramatically reduce the stochastic mismatches. The 
experiment on the real spectra dataset shows a significant reduction of 10% in 
the error rate as compared to a common linear similarity function.  

1   Introduction 

Case-based reasoning (CBR) relies on the use of a similarity function to rank previous 
cases for solving new problems [13, 14]. Over the years, CBR has enjoyed tremen-
dous success as a technique for solving problems related to knowledge reuse, with 
many important industrial applications [22]. The central component of a CBR system 
is a similarity function, based on which cases are retrieved and ranked for adaptation 
and further solution [13, 14]. Because of its importance, various methods have been 
proposed to compute the similarity between cases, including that of [2, 3, 14, 18, 19]. 
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Although various methods for learning the weights have been designed, no specific 
similarity function has been designed to take advantage of the correlative information 
between features using a nonlinear similarity function. An exception is the collabora-
tive filtering framework, in which a linear weighting function is used to represent the 
correlative information.  

This paper presents a general approach to engineering nonlinear similarity func-
tions for scoring cases, and highlights an application [11] of the new method to the 
peptide retrieval problem in bioinformatics. A central characteristic of this problem is 
that the correlated features should play a more important role in scoring the cases than 
other, non-correlated features. In order to emphasize the correlations, we apply the 
kernel functions to those correlated features. This implicitly translates the cases from 
the original space to a feature space with new dimensions for combinations of corre-
lated features. Thanks to the kernel trick, nonlinear similarity functions can be con-
structed in the original space with slight overhead. We show that the resulting similar-
ity function dramatically improves the retrieval accuracy.  

Mass spectrometry is currently one of the most important techniques for 
proteomics research [1]. Protein identification via tandem mass spectrometry 
(MS/MS) is the central task in MS/MS based proteomics. For example, for the 
diagnosis and therapy of diseases, investigation on the differently expressed 
proteomes in normal and abnormal cells is very important. High precision and high-
throughput protein identification via MS/MS needs not only elaborate biophysical 
instruments but also powerful computer algorithms. The basic computational problem 
is to retrieve the peptide sequence from which the observed MS/MS spectrum was 
derived through a search for the most similar theoretical MS/MS spectrum in a large 
database of known peptides. In this paper, we show that the peptide retrieval problem 
can be expressed as a case-based reasoning problem, in which the peptide sequences 
correspond to the cases while MS/MS spectra correspond to the features of cases. By 
using a kernel function to improve a common linear similarity measure for comparing 
MS/MS spectra, we show that much better retrieval accuracy can be obtained.  

Below, we first introduce how to design kernel-based nonlinear similarity 
functions for the case retrieval. Then we apply the proposed approach to the peptide 
retrieval problem. 

2   Applying the Kernel Trick to Similarity Measurement 

For the measurement of the similarity between cases, they are usually presented as 
feature vectors. One of the simplest similarity measures between two vectors is their 
dot product, i.e. 〈x, y〉, where x, y are n-dimensional feature vectors. For the binary 
features, the dot product counts the number of features that two cases possess in 
common. The cosine of the angle between vectors and the Euclidean distance can 
both be expressed in terms of the dot products, i.e.  

yyxxyxyx ,,,),cos( ⋅= , and  
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In reality, similar cases may not be close to each other geometrically in the original 
vector space, which we call the input space. In such cases, we may wish to map the 
original space to a new, usually higher dimensional space with an aim for the similar 
cases to get closer in the new space. The transformed space is called the feature space. 
For instance, when the elements of the input vector highly correlate with each other, 
we may want the feature space to include as new dimensions all the d-order products 
of the dimensions in the input space. However, the dimensionality of the feature space 
might be too high to compute efficiently and explicitly.  

The kernel trick, popularly used in the machine learning [20], overcomes this diffi-
culty gracefully. A kernel is a function k such that for all x, y∈A (usually A = Rn),  

)(),(),( yxyx φφ=k ,  

where φ is a mapping from the input space A to a feature space B. Usually, φ is a 
nonlinear mapping and the feature space B is of very high, or even infinite, dimen-
sions. Therefore, any computation that is exclusively based on the dot product in the 
feature space can be performed with the kernel k(x, y) from the input space, thus 
avoiding the explicit mapping φ from the input space to the feature space.  

For example, the polynomial kernel, 〈x, y〉d, implicitly maps the n-dimensional in-
put space to a much higher dimensional feature space with all d-order products of the 
dimensions of the input space as new dimensions. For instance, when d = 2 and x, 
y∈R2, we have  

)(),(, yxyx φφ=d ,   
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2
2
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Kernels have been widely used recently to extend linear learning algorithms to 
nonlinear versions, e.g. [5, 17]. However, kernels are not limited to learning algo-
rithms. Being the dot products in the feature space, kernels can be used to construct 
nonlinear version of any linear algorithm as long as only the dot product is involved. 
In the case of the case retrieval problem, we obtain the following kernel-based simi-
larity and distance measures for cases x and y (where we use a cos′(x,y) and d′(x,y) 
for the new cosine and distance functions): 

),( yxk ,  

),(),(),(),(sco yyxxyxyx kkk ⋅=′ , and  

),(),(2),(),( yyyxxxyx kkkd +−=′ .  

The success of these similarity and distance measures depends on the proper 
definition of the kernel k(x, y), which should incorporate the available apriori 
knowledge in the specific domain. In the following, we show how a kernel can 
incorporate the domain knowledge and is directly used as the similarity measure in a 
bioinformatic application. We first introduce the peptide retrieval problem in detail. 
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3   The Peptide Retrieval Problem 

Via MS/MS, protein identification problem is divided into peptides identification sub-
problem. In the mass spectrometer, peptides derived from digested proteins are ion-
ized. Peptide precursor ions of a specific mass-charge ratio (m/z) are fragmented by 
the collision-induced dissociation (CID). Product ions are detected. The measured m/z 
and intensity of the product ions form the peaks in the MS/MS spectrum. A peptide is 
a string of amino acid residues joined together by peptide bonds. For the low-energy 
CID, the b-y type backbone cleavage is most frequent and usually occurs only once in 
each peptide, resulting in b and y series of fragment ions, as shown in Fig. 1. The b 
fragments are the N-terminal sub-strings of amino acid residues dissociated from the 
cleaved peptide precursors, while the y fragments are the C-terminal sub-strings. The 
fragments can be singly charged or multiply charged and may possibly lose a neutral 
water or ammonia molecule. Besides these fragments, the noise and product ions 
derived from unexpected peptide cleavages also present themselves as peaks in the 
MS/MS spectrum. 
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Fig. 1. b and y fragment ions resulting from peptide bonds cleavage by collision-induced disso-
ciation 

To identify the peptide sequence of the observed MS/MS spectrum, the database 
searching approach has been widely used. The peptide retrieval problem can be 
expressed as follows: given the experimental MS/MS spectrum S, the peptides 
database D, and background conditions C, find the peptide pep* in D from which S 
derived. During a retrieval, peptide sequences in the database are fragmented 
theoretically to construct the theoretical MS/MS spectra. The experimental and 
theoretical MS/MS spectra are compared to find the target peptide. Expressed in terms 
of case retrieval, peptide sequences correspond to the cases while MS/MS spectra 
correspond to the features of cases. This paper focuses on the use of dot product simi-
larity to compare MS/MS spectra for scoring the peptides in the peptide retrieval 
problem.  

Various strategies have been proposed for scoring peptides in existing peptide re-
trieval software tools [4, 6, 7, 8, 10, 15, 23]. In existing peptide-scoring algorithms, 
the Spectral Dot Product (SDP) is often involved directly or indirectly and plays an 
important role. In SDP, the thereotical and experimental MS/MS spectra are 
represented as two N-dimensional spectral vectors, denoted by c = [c1, c2,…, cN] and t 
= [t1, t2,…, tN], respectively, where N is the number of different m/z values used, ci 
and ti are binary values {0, 1} or the intensities of the peaks at the i-th m/z value in 
MS/MS spectra. The SDP is defined as 
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The SDP-based cosine function of the angle between spectral vectors was used as 
an MS/MS spectrum similarity measure [21]. Sonar MS/MS [9, 10] explicitly adopted 
the spectral vector representation and the SDP for scoring peptides. The notion of 
cross-correlation in the SEQUEST [7] is in nature equivalent to the SDP. The shared 
peak count in early work is the special case of the SDP with ci and ti being binary 
values. An inherent drawback of the SDP is that it does not especially leverage cor-
relative information among the dimensions of spectral vectors corresponding to dif-
ferent fragments. This increases the possibility of stochastic mismatches. 

4   The Kernel-Based Correlative Similarity Function 

Our most important observation about the MS/MS spectrum is that the fragments 
resulting from peptide bonds cleavage by CID rarely occur independently; most often 
they tend to occur correlatively with each other. Intuitively, when positively corre-
lated fragments are matched together, the matches are more reliable and should be 
emphasized somehow for scoring the candidate peptide.  
 

Example 1. Two peptide sequences TSDANINWNNLK and FQDLVDAVRAEK, 
denoted by pepcorr and pepincorr respectively, have the same length and nearly the same 
peptide mass. Suppose that an observed MS/MS spectrum was derived from the pep-
tide precursors with the sequence pepcorr. To identify the peptide sequence, a retrieval 
is performed against the database containing the two peptide sequences pepcorr and 
pepincorr. For simplicity, the y series of fragments is used to construct theoretical 
MS/MS spectra. Compared with the observed spectrum, the correct peptide pepcorr has 
six matched fragments including y3, y4, y5, y6, y7, and y8 as shown in Fig. 2, while the 
peptide pepincorr has seven matched fragments including y2, y4, y5, y6, y9, y10, and y11. 
Although there are more matched fragments for the peptide pepincorr, the matches for 
the pepcorr are more consecutive and therefore should be considered as strong indica-
tors of correct answer. 
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Fig. 2. Consecutive fragments produced from the fragmentation of the peptide precursors with 
sequence TSDANINWNNLK 

To consider the correlation among fragments, we may exhaustively examine 
whether each possible combination of correlated fragments is matched as a whole. 
However, there may be too many such combinations to count one by one. Alterna-
tively, since we are only interested in the overall similarity between two MS/MS 
spectra rather than the detailed matching results of the individual fragment combina-
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tions, we can design the similarity function with kernels as a final sum of all the 
matching results. To this end, all predicted fragments in the theoretical MS/MS spec-
trum are arranged in a manner we call the correlative matrix, as shown in Fig. 3, thus 
making correlated fragments cluster into the local correlative windows. This kind of 
local correlation can be emphasized with the locally improved polynomial kernel 
[16]. 
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Fig. 3. Correlative matrix and correlative windows. The subscript number indicates the frag-
mentation position as illustrated in Fig. 1, superscripts 0 and * indicate a neutral loss of H2O 
and NH3, respectively 

We assume that all predicted fragments have their corresponding unique m/z val-
ues. The only influence of this assumption is that the shared m/z values are empha-
sized to some extent. We regard such emphasis as reasonable, since the shared m/z 
values should be of more importance than other, unique m/z values. Under this as-
sumption, all non-zero dimensions in the theoretical spectral vector t can be arranged 
into a matrix T = (tpq)m×n in accordance with their fragment types and fragmentation 
positions, where m is the number of fragment types and n+1 is the residue number of 
the peptide precursor. For example, t2,3 corresponds to the fragment b3

0
 in Fig. 3. For 

an experimental spectral vector c, the dimensions at the m/z value corresponding to tpq 
are also arranged into a matrix C = (cpq) m×n. Under the above assumption, we have 
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The correlative window may be defined according to the biologists’ expert knowl-
edge about how fragments are correlated. With the observation that the continuity of 
matched fragments is the most important correlation, we define the Kernel Spectral 
Dot Product (KSDP) [11] for consecutive fragments with locally improved kernel as 
follows, 
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where positive integers l1 and l2 are ( ) 21−l  and ( ) 21−l  respectively, the win-
dow power d is a positive integer and defines the maximum number of consecutive 
fragments to be considered. Integer l is the size of the correlative window. cik and tik 

are set to zero for k ≤ 0 and k > n. The weight w|k−j| reflects the assumed correlating 

strength between the fragments in the position (i,j) and its neighbor with |k−j| residues 
near to it. The KSDP given in Eq. (2) can be computed in O(lmn) time in general and 
in O(mn) time if w|k−j| equals one. The experimental analysis of this KSDP is pre-
sented in the next section.  

In Example 1, m = 1 and n = 11. When cik and tik are binary values, we have 

Tcorr = Tincorr = T = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),  

Ccorr = (0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0),  

Cincorr = (0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1).  

Therefore, 

SDPcorr = 〈Tcorr, Ccorr〉 = 6,  

SDPincorr = 〈Tincorr, Cincorr〉 = 7,  
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Thus, The correct peptide obtains a lower SDP score but a higher KSDP score in 
virtue of the kernel function to correlate consecutive fragments. 

5   Experimental Results 

The MS/MS spectra used for experiments come from a dataset of ion trap spectra 
reported in [12]. 18 purified proteins were mixed and digested with trypsin. 22 
LC/MS/MS runs were performed on this digested mixture. The generated MS/MS 
spectra were searched using the SEQUEST software against a database including 
human protein sequences and the 18 control mixture proteins (denoted by “human 
plus mixture database”). Search results were manually examined, and 2757 of them 
were confirmed as true positives.  

From the 2757 spectra with their peptide sequences correctly recovered, 2054 spec-
tra with their peptide terminus consistent with the substrate specificity of trypsin are 
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selected for our experiments to make the experiments more manageable. To reduce 
the noise in the original spectra, only the 200 most intense peaks are retained in each 
spectrum. In retrieval, trypsin and up to two missed cleavage sites are specified for 
theoretically digesting the sequences in the database. 3 daltons and 1dalton are set as 
the matching tolerances for the precursor and the fragment respectively. b, b++, b0, y, 
y++, and y0 are specified as the predicted fragment types. 

To tune the two parameters, window size l and window power d, experiments are 
performed for l∈{1, 2, 3, 4, 5, 6, 7, 8} and d∈{2, 3, 4} against the human plus mix-
ture database. The KSDP given in Eq. (2) is directly used as the similarity function 
with cik and tik being binary values and w|k−j| equal to one. The error rates vs. the pa-
rameters are illustrated in Fig. 4, in which erroneous identification indicates the fact 
that the correct peptide does not rank first in the search result. 

 

1 2 3 4 5 6 7 8
10

12

14

16

18

20

22

Window size

E
rr

or
 r

at
e

 (
%

)

d=1(SDP)

l

d

d

d=3

=4

=2

 

Fig. 4. Error rates vs. the window size l and window power d in KSDP given in Eq. (2) 

Compared with the SDP, the KSDP decreases the error rate by 10% at best in this 
experiment. The lowest error rate is obtained when d = 3 and l = 4 or 5. It can also be 
observed that for all tested values of l, the lowest error rate is obtained when d = 3; 
and, for all tested values of d, the lowest error rate is obtained when l = 4 or 5. There-
fore, we have a good reason to regard window size 4 or 5 and window power 3 as the 
approximate optimal parameters. 

When l = 1 or d = 1, the KSDP given in Eq. (2) reduces to the SDP given in Eq. 
(1). When l and d become larger than one, the kernel function takes effect and the 
error rate drops rapidly. It is clearly shown in Fig. 4 that nearly all the error rates for l 
> 1 are remarkably lower than that for l = 1. The same claim stands for the parameter 
d. The role of the kernel to reduce stochastic mismatches is significant.  
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6   Conclusions and Future Work 

This paper provides an approach to utilizing the correlative information among fea-
tures to compute the similarity of cases for case retrieval. This is achieved by extend-
ing the dot product-based linear similarity measures to their nonlinear versions with 
kernel functions. An application to the peptide retrieval problem in bioinformatics 
shows the effectiveness of the approach. The common linear similarity measure for 
tandem mass spectra, Spectral Dot Product (SDP), is extended to the Kernel SDP 
(KSDP) to take advantage of the correlative information among fragment ions. The 
experiments on a previously reported dataset demonstrate the effectiveness of the 
KSDP to reduce stochastic mismatches. In the future, we wish to apply the proposed 
method to other case retrieval problems. 
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