
 -1-

Solving SAT by Algorithm Transform of Wu’s Method

HE Simin (贺思敏) and ZHANG Bo (张钹)
Department of Computer Science and Technology

National Key Laboratory of Intelligent Technology and Systems
Tsinghua University, Beijing 100084, P. R. China

Received July 6, 1999

 Abstract Recently algorithms for solving propositional satisfiability problem, or
SAT, have aroused great interest, and more attention is paid to transformation problem
solving. The commonly used transformation is representation transform, but since its
intermediate computing procedure is a black box from the viewpoint of the original
problem, this approach has many limitations. In this paper, a new approach called
algorithm transform is proposed and applied to solving SAT by Wu’s method, a general
algorithm for solving polynomial equations. By establishing the correspondence
between the primitive operation in Wu’s method and clause resolution in SAT, it is
shown that Wu’s method, when used for solving SAT, is primarily a restricted clause
resolution procedure. While Wu’s method introduces entirely new concepts, e.g.,
characteristic set of clauses, to resolution procedure, the complexity result of resolution
procedure suggests an exponential lower bound to Wu’s method for solving general
polynomial equations. Moreover, this algorithm transform can help achieve a more
efficient implementation of Wu’s method since it can avoid the complex manipulation
of polynomials and can make the best use of domain specific knowledge.

 Keywords algorithm design, satisfiability problem, Wu’s method, automated
reasoning

1 Introduction
In recent years, algorithms for solving the propositional satisfiability problem, or SAT, have
attracted the attention of many researchers. Since SAT originated from automated theorem
proving (ATP), we can directly use ATP methods to solve SAT. There are mainly two such
algorithms: one is DP procedure [1], whose refinements are the most efficient complete
algorithms at present; the other is resolution procedure [2], which has beautiful properties in
ATP of first-order predicate logic and can, of course, be used to solve satisfiability problem in
propositional logic. In particular, resolution operation has deep relations with almost all
algorithms for SAT.
 Another approach to solving SAT is transformation problem solving, that is, by appropriate
transform, we can make use of some relatively mature methods, techniques or strategies
developed from other problem domains to solve the current problem indirectly.
Transformation problem solving can provide us with wider field of vision to reveal the
essence of the problem and the intrinsic connections between various problems and between
their solving methods. Currently, transformation algorithms for SAT are mainly related to the
following four classes of problem solving methods: discrete local search, linear and integer
programming, techniques for constraint satisfaction problems, and continuous optimization
algorithms.
 The common way of transformation is representation transform, which is to convert the
representation of the original problem to the form of a new problem, then use the algorithm
for the new problem to get the result, and finally convert the result back to the form of the
original problem. Although the inputs and the outputs under the two problem representations
correspond with each other, respectively, the intermediate computing procedure under the

 -2-

new problem representation can not be understood in terms of concepts and operations under
the original problem representation. In short, representation transform is not readable.
 Another way of transformation is algorithm transform, which we highly advocate in this
paper. Algorithm transform is to rewrite an algorithm for a new problem with concepts and
operations under the original problem representation and produce a new algorithm to solve the
original problem. Although we are still using methods from new problem domains to solve the
original problem, the intermediate computing procedure is no longer a black box: we are clear
about every step.
 Compared with representation transform, algorithm transform has its obvious superiority.
First, representation transform often produces a huge and inefficient transformed input
representation. Under the new problem representation, many implicit properties of the original
problem must be explicitly expressed now, while some important features of the original
problem can not be neatly and completely expressed. However, there is no such burden in
algorithm transform. Second, representation transform can not closely combine various
methods from different problem domains to solve one problem, since different methods
originally depend heavily on the corresponding different representations. Algorithm transform,
however, can produce efficient hybrid algorithms because all transformed methods can be
expressed under the common problem representation. This is a very important advantage since
we believe that no single method can efficiently solve so difficult a problem like SAT. Finally,
algorithm transform can help reveal the intrinsic connections between problems and between
their solving methods, but representation transform helps little.
 In this paper, we will discuss how to solve SAT by algorithm transform of Wu’s method.
Wu’s method [3] is a general method to solve polynomial equations, and its great success in
mechanical theorem proving in plane geometry inspires us to apply it to solving SAT.
Although it is novel to use Wu’s method to solve SAT, what we want to emphasize in this
paper is the importance of algorithm transform. In Section 2, we briefly introduce Wu’s
method. In Section 3, we show step by step how to use Wu’s method to solve SAT, especially
how algorithm transform is established, and how we benefit from algorithm transform both in
efficiency of implementation and in depth of understanding of Wu’s method. In Section 4, we
give detailed experimental results, including the performance of Wu’s method and its
comparison with those of resolution and DP procedures. Some discussions and concluding
remarks are given in Section 5.

2 Introduction to Wu’s Method
In this section, we will introduce some main concepts and theorems of Wu’s method, which
may be cited in later sections [3, 4].

2.1 Basic Concepts
For any number field K and any set of variables x1, x2,…, xn, K[x1, x2,…, xn] is a polynomial
ring over K and is denoted by K[x], Kn is the n-dimensional linear space over K. Let PS = {P1,
P2,…, Pm} be any set of polynomials in K[x], let x0 be any point in Kn, if Pj (x0) = 0 for all j
=1, 2,…, m, then x0 is called a solution to the system of polynomial equations PS = 0. We also
call x0 a zero of the set of polynomials PS, and the zero set of PS is denoted by Zero(PS).
Solving the system of polynomial equations PS = 0 is in fact equivalent to determining
Zero(PS).

2.2 Variable Ordering
The first step of Wu’s method is variable ordering, which makes great impact on the
performance of Wu’s method. However, no general rule has been found to determine a good
variable order. Therefore, we often determine a variable order heuristically with the help of
domain specific experience.
 After variable ordering, we define the leading variable of a polynomial P as the highest
variable that actually appears in P. If xi is the leading variable of P, then P can be written as

 -3-

P = I ⋅ id
ix + lower terms with respect to xi

where di is the highest degree of xi in P and is written as di = ixdeg (P), and I is the coefficient
of the leading term and is called the initial of P. A polynomial Q is said to be reduced with
respect to P if

ixdeg (Q) <
ixdeg (P).

 We introduce an order relation ‘≤’ among the polynomials: P ≤ Q if and only if (1) the
leading variable of P is lower than that of Q, or (2) P and Q have the same leading variable xi,
but

ixdeg (P) ≤
ixdeg (Q). We further define P ≅ Q if and only if P ≤ Q and Q ≤ P, and define P

< Q if and only if P ≤ Q but P ≅ Q does not hold.

2.3 Pseudo-Division between Two Polynomials
Pseudo-division between two polynomials is the primitive operation of Wu’s method. Given
two polynomials P and Q, let xi and I be the leading variable and the initial of P respectively,
generally we have

I s⋅ Q = H ⋅ P + R,
ixdeg (R) <

ixdeg (P)

where s is the least possible non-negative integer, and R is called the remainder of Q with
respect to P and is written as Rem(Q/P). We further have

Zero(P, Q) – Zero(I) = Zero(P, R) – Zero(I)

2.4 Ascending Set and the Remainder Formula
Ascending set is the basic concept of Wu’s method.

Definition 1 (Ascending Set). A set of polynomials AS = {A1, A2,…, Ar} is called an
ascending set if it satisfies (1) AS is of triangular form, that is, for any i, j, 1≤ i < j ≤ r, the
leading variable of Ai is lower than that of Aj, and (2) for any Ai and Aj, if i < j, then Aj is
reduced with respect to Ai. If r = 1 and A1 is a non-zero constant in K, then the ascending set
in this case is called a trivial contradictory ascending set.

 A polynomial is called reduced with respect to an ascending set if this polynomial is
reduced with respect to every polynomial in the ascending set.
 Let P be any polynomial, by successively pseudo-dividing P by Ai in reverse order from r
to 1, we get the remainder formula of the form

J ⋅ P = ∑i Hi ⋅ Ai + R
where J is a power-product of initials Ii of Ai, and Hi and R are polynomials with R reduced
with respect to AS. We can choose exponents of Ii in J to be as small as possible. Then R is
uniquely determined and will be called the remainder of P with respect to AS, and is denoted
by R = Rem(P/AS).

2.5 Characteristic Set and Zero Theorems
Characteristic set is the soul concept of Wu’s method.

Definition 2 (Characteristic Set). An ascending set CS = {C1, C2,…, Cr} is called a
characteristic set of a set of polynomials PS = {P1, P2,…, Pm} if CS satisfies
(1) for all j = 1, 2,…, m, Rem(Pj / CS) = 0, and
(2) Zero(PS) ⊆ Zero(CS).

Lemma 1. Given a set of polynomials PS = {P1, P2,…, Pm}, there is an algorithmic procedure
that can, within finite steps, produce a characteristic set of PS, or prove that there is no
solution to PS = 0.
 Often there are two strategies to compute the characteristic set, depth-first and breadth-first,
and the former is generally more efficient [4].

 -4-

Lemma 2. Given a set of polynomials PS = {P1, P2,…, Pm} and a characteristic set CS of PS,
CS = {C1, C2,…, Cr}, let Ii be the initial of Ci for each i = 1, 2,…, r and I be the product of all
these Ii, then the zero set of PS has the following structure

Zero(PS) = Zero(CS / I) + ∑i Zero(PS, Ii)
where Zero(CS / I) = Zero(CS) – Zero(I).

Lemma 3. There is an algorithmic procedure that permits to give for any polynomial set PS a
finite decomposition of the form

Zero(PS) = ∑i Zero(CSi / Ji)
where CSi is an ascending set and Ji is the product of all initials of polynomials in CSi.

3 Algorithm transform of Wu’s Method
In this section, we will explicate every essential step for solving SAT by Wu’s method. Please
refer to [5] for detailed proofs. First we give the formal definition of SAT problem in
Conjunctive Normal Form (CNF).

Definition 3 (The Propositional Satisfiability Problem). Let x1, x2,…, xn be n Boolean
variables and C1, C2,…, Cm be m clauses. For each variable xi, xi and its negation ix are
called complement literals with each other with respect to xi, and are denoted by ix~ . For
each clause Cj =

jkjjj xxx ~~~
21

∨∨∨ Λ , kj is the number of literals in Cj, and all literals in Cj

correspond to different variables. The question is: is there any consistent assignment of truth
value 0 or 1 to all the n variables that can make all the m clauses be evaluated true? In other
words, is the set of clauses satisfiable?

Example. Given five Boolean variables x1, x2, x3, x4, x5, and a set of seven clauses:
C1= 543 xxx ∨∨ , C2= 321 xxx ∨∨ , C3= 431 xxx ∨∨ ,
C4= 421 xxx ∨∨ , C5= 532 xxx ∨∨ , C6= 531 xxx ∨∨ , C7= 421 xxx ∨∨ ,
is this set of clauses satisfiable?

 This example will be used for illustration throughout this section.

3.1 Representation Transform
Representation transform is a natural way to use Wu’s method to solve SAT, which requires
rewriting SAT in polynomial terms and establishing correspondence between solutions under
two forms of representations. Appropriate representation transform is also a springboard to
algorithm transform of Wu’s method.
 One way to accomplish representation transform is to make use of the equivalence between
Boolean algebra and Boolean ring with unit element. Starting from general well-formed
formula (wff) representation of SAT, first use Boolean exclusive-or, and and constants 1, 0 to
express all Boolean connectives, then take exclusive-or as ‘+’, and as ‘×’. Thus each wff is
converted to a polynomial in B[x1, x2,..., xn] satisfying xi

2 = xi, where B=({0,1},+,×) is a
Boolean ring. Solution correspondence is set up accordingly. This transform is adopted in [6],
where Groebner basis method instead of Wu’s method is used to solve the system of
polynomial equations.
 However, we will not adopt this representation transform because it would destroy the
further possibility of establishing algorithm transform and lose any benefit from algorithm
transform, which will be explained later. Instead, we start from CNF or clause form
representation of SAT and adopt a natural representation transform f defined below.

Definition 4. Given a SAT instance of n Boolean variables xi and m clauses
Cj= ~ ~ ~x x xj j jk j1 2

∨ ∨ ∨Λ , a transform f is defined as follows:

(1) f(1) = 0, f(0) = 1

 -5-

(2) f xi(~) =
1 −

=
=

x
x

x x
x x

i

i

i i

i i,
, ~

~
if
if

(3) f x x xj j jk j
(~ ~ ~)

1 2
∨ ∨ ∨Λ = f x f x f xj j jk j

(~) (~) (~)
1 2

Λ

(4) clause set {C1,C2,Λ,Cm} corresponds to a set of Boolean polynomials PS

PS = { f(Cj) | j = 1, 2,…, m} U {xi(1–xi) | i = 1, 2,…, n}

where f(Cj) is called a clause polynomial, and xi(1–xi) is called a constraint polynomial.

Theorem 1 [5]. There is a bijection between satisfying truth assignments of clause set {C1,
C2,Λ, Cm} and zeros of the set of polynomials PS.

Example (continued). The polynomials corresponding to the seven clauses are:
f(C1) = x3 x4 (1–x5), f(C2) = x1 x2 (1–x3), f(C3) = x1 (1–x3) x4, f(C4) = (1–x1) x2 x4,
f(C5) = (1–x2)(1–x3) x5, f(C6) = (1–x1) x3 x5, f(C7)=(1–x1) x2 (1–x4),
x1 (1–x1), x2 (1–x2), x3 (1–x3), x4 (1–x4), x5 (1–x5).
 Actually, we will not directly use Wu’s method to determine Zero(PS), which is a trivial
idea. The above mentioned representation transform is only used to induce algorithm
transform and will be discarded after that.

3.2 Algorithm transform
The essential step of our algorithm transform of Wu’s method is establishing the
correspondence between the primitive operation in Wu’s method and clause resolution in SAT.
Pseudo-division is the primitive operation of Wu’s method, and from the following theorem
we can discover what is special about it when solving SAT.
Theorem 2 [5]. Let C and C′ be two clauses, and xi be the leading variable of f(C). Let xk (1–xk)
= 0 for all k = 1, 2,…, n be simplification rules, then Rem(f(C') / f(C)) can only have four
cases:
(1) if C′ has no literal with respect to xi ,
 Rem(f(C′) / f(C)) = f(C′) ;
(2) if C and C′ have same literals with respect to xi ,
 Rem(f(C′) / f(C)) = 0 ;
(3) if C and C′ have complement literals between them both with respect to xi and with respect
to some other variable,
 Rem(f(C′) / f(C)) = 0 ;
(4) if C and C′ have complement literals between them only with respect to xi ,
 Rem(f(C′) / f(C)) = f(Res(C, C′ , xi)) ,
where Res(C, C′ , xi) is the resolvent of C and C′ with respect to xi.

Example (continued). Assume the variable order is x1< x2< x3 < x4 < x5, then we have
Rem(f(C1) / f(C2)) = x1x2x4(1–x5) = Rem(f(Res(C1, C2, x3)), <case 4>
Rem(f(C1) / f(C3)) = 0, <case 2>
Rem(f(C1) / f(C5)) = 0, <case 3>
Rem(f(C2) / f(C3)) = f(C2). <case 1>

 From Theorem 2, we know that when using Wu’s method to solve SAT, the remainder of
pseudo-division between clause polynomials still corresponds to a clause, and furthermore,
only in case 4 can we get something new, which corresponds to nothing but the clause
resolvent! Therefore, the whole computing procedure corresponds to a clause resolution
procedure, and to be precise, a restricted resolution procedure because resolution is only done
with respect to some leading variable, not wherever there is a complement pair of literals!

 -6-

 Therefore, when solving SAT, the computing procedure of Wu’s method can now be
represented by our familiar language of clause and clause resolution, and it is in this sense
that we say algorithm transform has been established. Now polynomial language is no longer
needed, concepts and operations defined on clause polynomials can now be defined directly
on clause, for example, leading variable of clause, initial of clause, ascending set of clauses,
characteristic set of clauses, and pseudo-division between clauses. All of these bring entirely
new ideas to SAT problem solving.
 What can we benefit from this algorithm transform?
 First, we now obtain a new strategy to control resolution procedure in propositional logic.
Resolution procedure, though simple in principle, has great uncertainty in implementation:
even using control strategies like unit-preference and set-of-support can not avoid producing a
lot of clauses contributing nothing to proof, which greatly decreases the practical efficiency [7].
Although Wu’s method in clause form is also a resolution procedure, this resolution is rather
focused: resolution is only done with respect to the leading variable of clause, which is
similar to semantic resolution [8]. What’s more important, the computing procedure of Wu’s
method is concentrating on computation of characteristic set, which is completely new to
resolution principle and is more effective!
 Second, by algorithm transform, not only does resolution procedure benefit from Wu’s
method, Wu’s method also benefits from resolution procedure. Haken [9] proves that any
resolution proof of pigeonhole problem must have at least exponential number of different
clauses, which means an exponential lower bound to resolution proof of SAT problem. Wu’s
method is primarily a resolution procedure when solving SAT, especially on unsatisfiable
instances like pigeonhole problem, only resolution operation (case 4 of Theorem 2) can help
produce a contradiction, therefore, in the worst case, Wu’s method may have the same fate as
general resolution. Theorems 1 and 2 combined with [9] probably give an exponential lower
bound to Wu’s method when solving general polynomial equations, which is really a
non-trivial result. We do not state this proposition strictly because the problem decomposition
step of Wu’s method should be dealt with specially, although we do not think it will influence
the result of complexity. We only want to indicate that algorithm transform can really deepen
our understanding of Wu’s method while representation transform can not.
 Finally, algorithm transform not only helps understand but also helps implement Wu’s
method in computer for solving SAT. All clauses or clause polynomials can be neatly
represented by one-dimensional array where array length is equal to the number of variables.
Positive, negative and no occurrence of the related variable can be represented by 1, –1 and 0
respectively. And clause resolution or clause pseudo-division is also easy to be implemented
on this data structure. Furthermore, we can make use of our experience of solving SAT to help
adapt Wu’s method to SAT, which will be explained later. It goes without saying that
implementation is crucial to evaluation of a method. If we had used polynomial representation
of clauses, which would be inevitable in representation transform, we could not imagine how
complex and inefficient it would be, let alone make use of the past experience!
 Now we can use clause language to represent and implement Wu’s method in order to solve
SAT. However, we must adhere to the main steps of Wu’s method because it is an entirely
new resolution procedure, and its correctness and termination depend on the property of
general Wu’s method. Next we explain how to adapt some major steps of Wu’s method to
SAT, including characteristic set computing, problem decomposition, and variable ordering,
which will help us further grasp algorithm transform.

3.3 Characteristic Set Computing
Characteristic set is the kernel concept of Wu’s method, whose computation is the main
procedure. We will explain what is special about characteristic set computing, characteristic
set form, and determination of zero set of characteristic set on SAT problem.
 We use depth-first strategy [4] to compute characteristic set of polynomial set PS defined in
Subsection 3.1, but add some modifications. We know that PS consists of clause polynomials

 -7-

f(Cj) for all j = 1, 2,Λ, m and constraint polynomials xi(1–xi) for all i = 1, 2,Λ, n. When
computing characteristic set, we only do pseudo-division between clause polynomials
according to Theorem 2; constraint polynomials will only work implicitly as simplification
rules in Theorem 2. We have the following theorem.

Theorem 3 [5]. For computing the characteristic set of PS, the general procedure with above
modifications will terminate. If any contradiction is produced, then PS has no solution.
Otherwise, we will get an ascending set of clause polynomials AS = { f(Ck′) | k = 1, 2, …, r}
(1 ≤ r ≤ n) such that every clause polynomial f(Cj) of PS has remainder 0 with respect to AS
according to Theorem 2. Let CS = AS U {xt(1–xt) 1≤ t ≤ n, xt is not a leading variable of any
polynomial in AS}, then CS is a characteristic set of PS.

Example (continued). Here we give the computing procedures of a characteristic set of PS
under two different variable orders.
 Case 1: the variable order is x1 < x3 < x2 < x4 < x5, under which the clause polynomials can
be ordered as f(C2) < f(C3) ≅ f(C4) ≅ f(C7) < f(C1) ≅ f(C5) ≅ f(C6). Let AS denote an ascending
set.
(1) Initially, add f(C2) to AS for initialization, and AS = { x1(1–x3)x2 };
(2) Compute Rem(f(C3) / AS), and add the remainder x1(1–x3)x4 to AS, no further reduction is
needed. Now AS = { x1(1–x3)x4, x1(1–x3)x2 };
(3) Compute Rem(f(C4) / AS), which is 0;
(4) Compute Rem(f(C7) / AS), which is 0;
(5) Compute Rem(f(C1) / AS), which is 0;
(6) Compute Rem(f(C5) / AS), and add the remainder x1(1–x3)x5 to AS, no further reduction.
Now AS = { x1(1–x3)x5, x1(1–x3)x4, x1(1–x3)x2 };
(7) Now compute Rem(f(Cj) / AS) for all j = 1, 2,…, 7, and they are all 0;
(8) A characteristic set CS of PS is AS U { x3(1–x3), x1(1–x1) }. That is, under the variable
order x1< x3< x2 <x4<x5, a characteristic set of PS is CS = { x1(1–x3)x5, x1(1–x3)x4, x1(1–x3) x2,
x3(1–x3), x1(1–x1) }.
 Case 2: the variable order is x1 < x2 < x3 < x4 < x5, under which the clause polynomials can
be ordered as f(C2) < f(C3) ≅ f(C4) ≅ f(C7) < f(C1) ≅ f(C5) ≅ f(C6). Let AS denote an ascending
set.
(1) Initially, add f(C2) to AS for initialization, and AS = { x1x2(1–x3) };
(2) Compute Rem(f(C3) / AS), which is 0;
(3) Compute Rem(f(C4) / AS), and add the remainder (1–x1)x2x4 to AS, no further reduction is
needed. Now AS = { (1–x1)x2x4, x1x2(1–x3) };
(4) Compute Rem(f(C7) / AS), and add the remainder (1–x1)x2 to AS, then reduce all other
clause polynomials in AS with respect to (1–x1)x2. Now AS = { (1–x1)x2 };
(5) Compute Rem(f(C1) / AS), and add the remainder x3x4(1–x5) to AS, no further reduction.
Now AS = { x3x4(1–x5), (1–x1)x2 };
(6) Compute Rem(f(C5) / AS), which is 0;
(7) Compute Rem(f(C6) / AS), and add the remainder (1–x1)x3x4 to AS, then x3x4(1–x5) in AS
will be reduced to 0 with respect to (1–x1)x3x4. Now AS = { (1–x1)x3x4, (1–x1)x2 };
(8) Compute Rem(f(C2) / AS), which is 0;
(9) Compute Rem(f(C3) / AS), which is 0;
(10) Compute Rem(f(C4) / AS), which is 0;
(11) Compute Rem(f(C7) / AS), which is 0;
(12) Compute Rem(f(C1) / AS), which is 0;
(13) Compute Rem(f(C5) / AS), and add the remainder (1–x1)(1–x3)x5 to AS, no further
reduction. AS = { (1–x1)(1–x3)x5, (1–x1)x3x4, (1–x1)x2 };
(14) Now compute Rem(f(Cj) / AS) for all j =1, 2,…, 7, and they are all 0;
(15) A characteristic set CS of PS is AS U { x3(1–x3), x1(1–x1) }. That is, under the variable
order x1 < x2 < x3 < x4 < x5, a characteristic set of PS is CS={(1–x1)(1–x3)x5, (1–x1)x3x4,
x3(1–x3), (1–x1)x2, x1(1–x1)}.

 -8-

 From above, it is shown that under different variable order, the complexity of characteristic
set computing, and the characteristic set itself, can be quite different.

 Theorem 3 assures us that the above modifications, while improving efficiency, will not
destroy termination or correctness of characteristic set computing in original sense of Wu’s
method. Thus, the characteristic set computing procedure becomes completely a clause
resolution procedure.
 Let I be the product of initials of polynomials in the characteristic set CS. The following
theorem tells us that it is trivial to decide Zero(CS/I).

Theorem 4 [5]. Zero(CS/I) ≠ ∅ if and only if there is no complement pair of literals between
the clauses corresponding to the initials of CS. If Zero(CS/I) ≠ ∅ , the element of Zero(CS/I)
can thus be determined: literals corresponding to the leading variables of clause polynomials
in CS should be true, literals contained in I should be false, the other variables can have
either value.

 We call a variable conflicting if there is a complement pair of literals with respect to this
variable between initials of CS. Obviously Theorem 4 means Zero(CS/I) ≠ ∅ if and only if
there is no conflicting variable in CS.

Example (continued). Under the variable order x1 < x3 < x2 < x4 < x5, a characteristic set of PS
is CS = {x1(1–x3)x5, x1(1–x3)x4, x1(1–x3) x2, x3(1–x3), x1(1–x1)}. Since there is no conflicting
variable in CS, then Zero(CS/I) is not empty. In fact, Zero(CS/I) = {(x1=1, x2=0, x3=0, x4=0,
x5=0)}. But under the variable order x1 < x2 < x3 < x4 < x5, a characteristic set of PS is CS =
{(1–x1)(1–x3)x5, (1–x1)x3x4, x3(1–x3), (1–x1)x2, x1(1–x1)}, and there is a conflicting variable x3,
thus Zero(CS/I) = ∅ .

 Now it is more clear why we decide to start from clause form instead of general
well-formed formula form: if starting from general well-formed formula form, first it would
be difficult to gain readability, secondly computation of characteristic set using general
polynomial representation would be rather inefficient, finally it would be much more difficult
to decide Zero(CS/I), compared with Theorem 4.
 Characteristic set is the soul of Wu’s method. Although when solving SAT, Wu’s method
has close relations with resolution procedure, but the concept of characteristic set is unique,
which makes Wu’s method an entirely new algorithm to solve SAT. In fact, the computation
of the characteristic set can be extracted from Wu’s method and be integrated into other
algorithms, in order to make the most of Wu’s method. Without the help of algorithm
transform, however, we would hesitate to do so because we could not understand Wu’s
method in such depth.

3.4 Problem decomposition
If no contradiction is produced but Zero(CS/I) = ∅ , then according to Wu’s method it is
necessary to decompose the problem: we must solve {PS, Ii} respectively, where each Ii is the
initial of each polynomial of CS.
 Since SAT can be naturally decomposed into two branches xi = 0 and xi = 1, and shorter
clause is more useful than longer one, we decide to decompose the problem in this way to
make use of this special feature of SAT. It is rational to select branching variable from
conflicting variables in CS. If there are more than one conflicting variable, we experiment
with two strategies: highest first or lowest first.
 Now we can view the computing procedure of Wu’s method as expanding a search tree, and
each node of the tree represents a characteristic set, where an inner node means Zero(CS/I) =
∅ , a leaf node either means a contradiction has been produced and we should backtrack, or
means Zero(CS/I) ≠ ∅ and we have found a solution.

 -9-

3.5 Variable Ordering
Variable ordering is in fact the first step of Wu’s method. After representation transform, we
should first set a variable order so as to decide the leading variable of each clause polynomial
and start computing the characteristic set, etc. Variable order has great effect on the efficiency
of Wu’s method.
 However, since there is no general effective rule to decide a good variable order, we can
only make use of domain specific heuristics to do it. In fact, when we design DP or
backtracking algorithm to solve SAT, variable ordering is also an essential step, which is used
for choosing the next branch variable. The commonly used heuristic is to order the variables
by the strength of constraints on them and the most constrained first. Of course, the strength
of constraints on variable can only be approximately estimated. In our experience, on the
commonly used fixed clause-length random instance model of SAT [10], the product of the
number of positive occurrences and the number of negative occurrences of the variable is a
good estimator. Here we try to apply this variable ordering heuristic in DP to the variable
ordering in Wu’s method, and thus we have at least two variable orders: the more constrained
the higher or just the reverse. To further test the effects of these two variable orders, we use
random variable order for comparison. We experiment with all these three variable orders in
the next section.
Example (continued). According to the above heuristic variable ordering rule, we can decide
upon a variable order x1 < x3 < x2 < x4 < x5, corresponding to which a characteristic set of PS is
CS = {x1(1–x3)x5, x1(1–x3)x4, x1(1–x3)x2, x3(1–x3), x1(1–x1)}, as shown before. Since there is no
conflicting variable in CS, then Zero(CS /I) is not empty, and the clause set is satisfiable. In
fact, Zero(CS/I)={(x1=1, x2=0, x3=0, x4=0, x5=0)}, which gives a satisfiable variable
assignment. But, under the natural variable order x1 < x2 < x3< x4 < x5, the computing of a
characteristic set is much more complicated as shown before; and what’s worse, there is a
conflicting variable x3 in the computed characteristic set CS = {(1–x1)(1–x3)x5, (1–x1)x3x4,
x3(1–x3), (1–x1)x2, x1(1–x1)}, thus Zero(CS/I) = ∅ , further decomposition or branching is
unavoidable in order to decide whether the clause set is satisfiable.

4 Experiments
In this section, we report detailed experimental results of Wu’s method for solving SAT. We
should have implemented in computer both representation transform and algorithm transform
of Wu’s method to demonstrate the superiority of the latter, but representation transform is
really too complex to be implemented in computer and its bad performance can be anticipated.
Therefore we only implement algorithm transform of Wu’s method and mainly want to
indicate that, after algorithm transform, Wu’s method can easily utilize experience of, or be
utilized by, other algorithms. We also want to know the efficiency of our implementation of
Wu’s method.
 The experiments include three parts. First, we test which variable order and branch order is
the best, and find out the most efficient implementation of Wu’s method for solving SAT.
Secondly, we compare Wu’s method with two resolution procedures, the semantic resolution
and the set-of-support resolution, which are both relatively efficient and closely related to
Wu’s method. Finally, we compare Wu’s method with DP procedure, which is currently the
most efficient algorithm for solving SAT. From these experiments, we can have a
comprehensive understanding of Wu’s method and its algorithm transform..
 We use the fixed clause-length random 3-SAT instance model [10] as benchmark because
this model is commonly used and can easily generate difficult instances. Most experiments
are done on instances with m/n ≈ 4.3, for this is the most difficult point. All programs are
written in C and compiled with -O3 option on SGI Indigo-Elan-4000 workstation.

 -10-

4.1 Eff icient Implementation of Wu’s method
Under the algorithm transform of Wu’s method defined in Section 3, it is easy to implement
Wu’s method. We only need to select a better combination of variable order and branch order.
We tested 3 variable orders: the more constrained the higher (MCH), the more constrained the
lower (MCL), and random variable order (RAN) (see Subsection 3.5) and 2 branch orders: the
highest conflicting variable branching first and the lowest conflicting variable branching first
(see Subsection 3.4).

Table 1. Implementation of Wu’s method
Experiment 1: Implementation of Wu’s method
50 variables, 215 clauses, 50 instances(27 satisfiable)

 lowest branching first highest branching first
 time node operation time node operation
 sat 0 17 35778 0 65 67684

MCL unsat 1 28 70909 2 141 156358
 total 0 23 51938 1 100 108474
 sat 1 36 121738 3 144 241661

RAN unsat 6 113 421027 10 433 716021
 total 4 72 259411 6 277 459867
 sat 29 328 1811622 22 364 1413003

MCH unsat 109 999 6617467 61 904 3813508
 total 66 637 4022311 40 612 2517235

 In Table 1, time unit is second, time = 0 means time < 0.5s, ‘node’ means the average
number of characteristic set computed (see Subsection 3.4), ‘operation’ means the average
number of primitive operations which include Cases 2, 3 and 4 of Theorem 2 since there is
little to do in Case 1.
 From the data of Table 1, we can know that variable order can significantly influence the
performance of the algorithm. Specifically, MCL order is uniformly better than random order,
and random order is uniformly better than MCH order. This means that our experience in
estimating strength of constraints on variable when designing DP algorithm is really effective
when adapting Wu’s method to SAT. The success of MCL order also suggests some general
rule of variable ordering when using Wu’s method to solve general polynomial equations, that
is, to place the more constrained variable in lower order may reduce the number of primitive
operations when computing characteristic set.
 As indicated in Table 1, we will use more-constrained-lower as variable order and
lowest-conflicting-first as branching strategy, which is the best combination to implement
Wu’s method. Table 2 reports the performance of Wu’s method on larger scale instances.

Table 2. Performance of Wu’s Method
Experiment 2: Performance of Wu’s Method

variables=100, clauses=400,430,500, instances=100 each
clauses instance time node operation

 sat 99 25 144 952470
400 unsat 1 125 591 4703445

 total 100 26 149 989980
 sat 54 38 165 1394844

430 unsat 46 83 313 2997091
 total 100 59 233 2131877
 sat 1 4 15 150987

500 unsat 99 40 84 1430169
 total 100 40 83 1417377

 -11-

4.2 Comparison with Resolution Procedure
Since Wu’s method has intrinsic connections with resolution procedure, we experimentally
compared Wu’s method with two resolution procedures: semantic resolution and
set-of-support resolution.
 Semantic resolution [8] has some similarities with Wu’s method in that they both need a
variable order. Set-of-support resolution is one of the most efficient resolution procedures [7].
Semantic resolution and set-of-support resolution also have deep connections with each other,
and they are both complete strategies. This is why we select these two for the comparison
with Wu’s method.
 To implement set-of-support resolution, we need first to determine the set of support. In
theorem proving we often use refutation of conclusion as the set of support, yet it does not
work in SAT. Therefore, we decide to use an interpretation of propositional variables to
produce a set of unsatisfied clauses and treat this set as the set of support. We tried two
methods: one is to use a random interpretation, the other is to use local search to find an
interpretation under which the set of unsatisfied clauses can be smaller.
 To implement semantic resolution, we need determine an interpretation of all variables and
a variable order. We tested the same two methods of interpretation selection as used in
implementing set-of-support resolution and the same three variable orders as used in
implementing Wu’s method.
 Applying local search to resolution procedure is a new idea. Recently local search has been
successfully used in solving SAT [11]. Local search can quickly find a local minimum, i.e., an
interpretation of all variables under which there are only a few unsatisfied clauses. In
set-of-support resolution, if the initial set of support can be made smaller, the growth of the
number of resolvents can be greatly slowed down. This is one of the 33 basic problems
proposed by Wos [7]. Here we apply local search to resolution procedure in propositional logic
for two purposes: one is to test its feasibility before applied to first-order predicate logic, the
other is to speed up set-of-support and semantic resolution in order to do a relatively fair
comparison with Wu’s method.
 We have tested 6 implementations of semantic resolution and 2 implementations of
set-of-support resolution in order to find the best. We have used complex indexing techniques
and unit-preference strategy to speed up resolution procedure. The maximum capacity of
clause list is 10000 clauses. Please refer to [5] for detailed experiment data. On 50 instances
of 30 variables and 129 clauses, semantic resolution is better than set-of-support resolution,
and MCL variable order is much better than both MCH and random order. In particular, with
the interpretation found by local search, the performance of all 6 implementations of semantic
resolution has been improved by 100% compared with random interpretation, and by 20% in
set-of-support resolution. Therefore we suggest that local search should be introduced to ATP
in first-order predicate logic. Local search in (maybe restricted) Herbrand interpretation
universe may find a better set of support, and/or a better interpretation for semantic resolution,
and/or a better top clause for linear resolution, etc. All these steps are essential to the
performance of the corresponding algorithms.
 We compared Wu’s method with semantic resolution using MCL variable order. Although
the number of primitive operations in unit propagation is not included in the statistics of
semantic resolution, and local search helps improve its performance by 100%, Wu’s method is
still dominant. In Table 3, ‘S.R.1’ means semantic resolution with random interpretation,
‘S.R.2’ means semantic resolution with local search interpretation, ‘subsume-1’ means
number of subsumption test callings by new resolvents, and ‘subsume-2’ means number of
basic subsumption test between two clauses. Note that in ‘S.R.2’, local search has already
solved the satisfiable instances and resolution is no longer needed.

 -12-

Table 3. Comparison with Semantic Resolution

Experiment 3: Comparison of Wu’s Method with Semantic Resolution
30 variables, 129 clauses, 50 instances (25 satisfiable)

 SAT UNSAT
 time primitive operation time primitive

operation

S.R.1

20
resolution=23602
subsume-1=20103
subsume-2=5.3M

20

resolution=23708
subsume-1=20249
subsume-2=4.9M

Wu 0 6701 0 8980

S.R.2

8
resolution=10804
subsume-1=9124
subsume-2=1.8M

4.3 Comparison with DP procedure
DP procedure is currently the most efficient complete algorithm for SAT, so we think it is
necessary to compare Wu’s method with DP procedure.
 To implement DP procedure, branching strategy is the essential step. We adopt the
commonly used strategy of most constrained variable branching first, and use dynamic
variable ordering at each node, which is different from the static one in Wu’s method. We
also test the idea of embedding characteristic set computing in the node of DP search tree, i.e.,
treating characteristic set computing as another node operation besides unit resolution. Thus,
at least in principle, we achieve a non-trivial combination of DP and the more complex Wu’s
method. Table 4 gives the experiment data.
 From Table 4, we can know that Wu’s method is not so fast as DP procedure, although the
size of the search tree is smaller. When characteristic set computing is embedded in DP,
although it is still worse than pure DP in time, the new algorithm is better than Wu’s method
both in time and in the number of nodes.

Table 4. Comparison with DP algorithm

Experiment 4: Comparison and Combination with DP algorithm
100 variables, 430 clauses, 100 instances (54 satisfiable)

 sat unsat total
 time node time node time node

DP 0 155 0 471 0 301
Wu 38 165 83 313 59 233

DP+Wu 6 50 19 124 12 84

5 Discussions and Conclusions
In the above sections, we have discussed how to solve SAT by algorithm transform of Wu’s
method. Here we discuss two further problems.
 The first problem is whether algorithm transform always exists. In our opinion, at least in
NP-complete problem set, which includes almost all problems with great potential in
applications, since representation transforms have been established among the problems and
all these problems are equivalent from the viewpoint of the worst case complexity, we believe
that algorithm transform does exist, but may not be obvious. Therefore the algorithm
transform can be discovered only if you have this thought in mind, and design an appropriate
representation transform as illustrated in this paper, or by some other ways such as abstraction.
For example, the local search algorithm for solving SAT, though innovative, can be
considered as the abstraction of the old technique for solving Traveling Salesman Problem,
with some modifications to the problem representation, that is, transforming a decision
problem SAT to an optimization problem MAX-SAT. In recent years, great progress has been

 -13-

made in designing new algorithms to solve various NP-complete problems, which provides us
with a wider space to explore algorithm transform.
 The second problem is about the performance of Wu’s method. It seems in Section 4 that
the performance of Wu’s method on random SAT instances is not so attractive compared with
DP algorithm. But first, as we have mentioned at the beginning of Section 4, if we had used
representation transform of Wu’s method to solve SAT, the performance would have been
much worse than that of algorithm transform, which is the essence of the problem. Second,
Wu’s method really brings entirely new concepts and techniques to SAT algorithms, and
because of the readability, all of these can be easily exploited by other SAT algorithms to
produce more efficient hybrid ones. We should not expect Wu’s method to solve all the
problem. We only provide a way to make use of such a relatively complex tool. Third,
performance is very sensitive to instance model, which is a common phenomenon in
experimental comparison of SAT algorithms. More instance models should be tested in the
future, which is another problem.
 In conclusion, we highly advocate in this paper a new approach to transformation problem
solving, namely algorithm transform, and under the guidance of this strategy, we discuss the
problem of solving SAT by Wu’s method and show that Wu’s method, when used to solve
SAT, is primarily a restricted resolution procedure. While Wu’s method introduces entirely
new concepts, e.g., characteristic set of clauses, to resolution procedure, the complexity result
of resolution procedure suggests an exponential lower bound to Wu’s method when solving
general polynomial equations. Moreover, this algorithm transform can help achieve a more
efficient implementation of Wu’s method since it can avoid the complex manipulation of
polynomials and can make the best use of domain specific experience.

Acknowledgements
The first author would like to thank Drs./Profs. Wu Jinzhao (吴尽昭), Wang Jue (王珏), Liu
Zhuojun (刘卓军), Zou Hongxing (邹红星), Zhang Ling (张铃), Lu Xuguang (卢旭光) and
the editors for their help and encouragement during the preparation of this paper.

References
[1] Davis M, Logemann G, Loveland D. A machine program for theorem proving.

Communications of the ACM, 1962, 5: 394-397.

[2] Robinson J A. A machine-oriented logic based on the resolution principle. Journal of the

ACM, 1965, 12(1): 23-41.

[3] Wu Wenjun. Basic principles of mechanical theorem proving in geometries. Journal of

Automated Reasoning, 1986, 2: 221-252.

[4] Kapur D, Lakshman Y N. Elimination theory: an introduction. Chapter 2 in Symbolic and

Numerical Computation for Artificial Intelligence, Academic Press, 1992.

[5] He Simin. The Design and Analysis of Algorithms for Satisfiability Problem. Ph.D.

dissertation, Department of Computer Science and Technology, Tsinghua University, 1997.

[6] Kapur D, Narendran P. An equational approach to theorem proving in first-order predicate

calculus. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (IJCAI-85), Los Angeles, 1985, Vol. 2, pp. 1146-1153.

[7] Wos L. Automated Reasoning: 33 Basic Research Problems. Prentice Hall, 1988.

 -14-

[8] Slagle, J. Automatic theorem proving with renamable and semantic resolution. Journal of
the ACM, 1967, 14: 687-697.

[9] Haken A. The intractability of resolution. Theoretical Computer Science, 1985, 39:

297-308.

[10] Mitchell D, Selman B, Levesque H. Hard and easy distribution of SAT problems. In

Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), San
Jose, CA, July 1992, pp. 459-465.

[11] Selman B, Levesque H, and Mitchell D. A new method for solving hard satisfiability

problems. In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-92), San Jose, CA, July 1992, pp. 440-446.

This work is supported by National Natural Sciences Foundation of China.

He Simin was born in 1968 and had been studying in the Department of Computer Science
and Technology, Tsinghua University since 1986 and received Ph.D. degree in 1997. His
research interests include algorithmics, especially experimental algorithmics, and their
applications.

Zhang Bo was born in 1935 and is a Professor in the Department of Computer Science and
Technology, Tsinghua University. He is a member of the Chinese Academy of Sciences and a
Foreign Fellow of Russian Academy of Sciences. His research interests are foundations of
artificial intelligence, including the theory and application of problem solving, artificial
neural networks.

